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STABILITY OF THE LAMINAR BOUNDARY LAYER WITH STRONG BLOWING 

L. I. Zaichik and V. A. Pershukov UDC 532.526 

The authors present a method of calculating nonsimilarity laminar boundary 
layer flow over a permeable flat plate with uniform blowing. 

As was shown in [i, 2], the boundary-layer equations for zero-gradient flow over a per- 
meable flat plate can be solved for a finite range of variation of the blowing parameter F w. 
As F w tends to a critical value the boundary layer thickness increases without bound, while 
the friction coefficient tends to zero. For the case of uniform blowing along the length 
of the plate similar conclusions were reached in [3, 4], from direct numerical solution of 
the boundary layer equations. However, the results of the experimental investigation of [5] 
indicate that the laminar flow regime can exist for large enough intensities of transverse 
mass flow. It was shown in [5, 6] that as the blowing parameter increases there is a gra- 
dual deformation of the velocity profile from the Blasius to a sharply pronounced S-shape 
typical of jet type flows. When F w reaches the critical value one does not observe a sharp 
increase of the boundary layer thickness nor a change of the flow regime, i.e., the bound- 
ary layer separates smoothly from the wall. A simple analytical solution of [7] gives good 
agreement with the experimental data at moderate blowing intensities, as was shown in [6]. 
The unsatisfactory agreement between the theoretical and experimental velocity distributions 
with strong blowing is due primarily to the negative pressure gradient induced by the trans- 
verse mass flow, which is not accounted for in either the numerical solutions [3, 4] or the 
analytical solution [7]. 

i. To establish (i.e., find) the velocity distribution in the unperturbed boundary 
layer with uniform blowing, we use the results of an asymptotic analysis of the equations of 
motion employed in [8, 9]. These papers obtained the result that for strong blowing the 
dividing streamline characterizing the zero value of the stream function is a straight line, 
and the region bounded by it has the shape of the wedge 

yo = (~M~/2) ~/3x. ( 1 ) 

Therefore, to describe the velocity distribution in the boundary layer with uniform 
blowing and allowing for the induced pressure gradient, we use the similarity family of 
Falkner-Skan profiles appropriate to flow over a permeable wedge with semiopening angle 

f"'+f"f+~O--f'2)=O, n=O, f= - - f~ ,  
(2) 

f'=O; ~=oo, f ' = l .  

Thus, it is assumed that the influence of blowing on the external flow may be an effec- 
tive method of replacing the original problem by an equivalent one: flow over a body whose 
profile is formed by the dividing streamline between the blown gas and the incident flow. 
Then, assuming, on the basis of Eq. (i), that the blowing creates the same pressure gra- 
dient as in flow over a wedge, i.e., that these two flows are similar, we obtain the follow- 
ing relation between the pressure parameter and the blowing intensity: 

We used Eq. (3) to calculate the velocity distributions ~hown in Fig. i. In a comparison 
with the experimental data of [5], obtained for a Reynolds number of Re x = 5-103 , we find 
satisfactory agreement of the results for all intensities of transverse mass blowing. 
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Fig. i. Velocity distribution across the boundary layer with uniform 
blowing: i) M = 0.0058; 2) 0.013; 3) 0.032; 4) 0.05; 5) 0.ii. 

Fig. 2. Critical Reynolds number of the similarity boundary layer as 
a function of the blowing parameter: I) 8 = 0.0; 2) 0.i; 3) 0.2; 4) 
0.3; 5) 0.4; 6) 0.5. 

On the basis of the similarity described above we can calculate the stability of the 
laminar boundary layer on a permeable flat plate with uniform blowing, for which one must 
calculate the stability characteristics of the Falkner-Skan similarity flows over a wide 
range of variation of the pressure and blowing intensity parameters. 

2. The stability of laminar flow in the boundary layer described by Eq. (2) was analyzed 
in a linear formulation. In this case, the equation for the amplitude of small perturba- 
tions in similarity variables has the form 

~ , v  __ 2 ~ , ,  ~_ aaq~ ___ i s  -V i2  - -  6) Rex [( f '  - -  C)(fld' - -  =~q~) - -  ( 4 )  

- -  f ' " ~ ]  - -  ( f  + (6 - -  1) ~ l f ' ) (<V" - -  o ~ ' )  + ( ( 2 f l  - -  1) f "  + (p - -  1) ~ f ' " )  ~ ' ,  

as the velocity scale we choose the quantity Ue, and as the length scale - ~(2-~)/Rexx. The 
boundary conditions for Eq. (4) are given by the requirement that there are no velocity fluc- 
tuations at the wall and that they attenuate at infinity according to the exponential law 

i l  = O, ~ - -  q/----- O; ~'1 = oo, ~ " - -  o~q~ ~ O, ~ '  + ~q~ = O. ( 5 )  

The calculations were done for the case of neutral perturbations, i.e., we assumed C i : 
0. The eigenvalue problem of Eqs. (4) and (5) is solved by the differential marching 
method described in [i0]. 

For zero-gradient flow over a flat plate (6 = 0) the calculated results coincide with 
the corresponding data obtained in [ii]. For this case there is a critical value of the 
blowing parameter fw, = 0.876, which as we approach it becomes difficult to calculate the 
stability, since there is separation of the boundary layer characterized by unbounded in- 
crease of its thickness and by the velocity gradient at the wall going to zero. To describe 
the flow near the separation point (fw ~ fw,) as was shown in [12], one can use the solution 
of the Lock problem for the mixing layer of parallel flows 

f , , , + f F  = O; f ( - - ~ ) = - - f ~ , ,  f ' ( - - o o ) =  O, f ' ( o o ) =  1. (6)  

Thus, t he  problem of  de t e rmin ing  the  s t a b i l i t y  of  the  s i m i l a r i t y  boundary l a y e r  as the  
blowing pa ramete r  approaches  the  c r i t i c a l  v a l u e  r educes  to  s o l v i n g  the  Or r -Sommer fe ld  equa- 
t i o n  (4)  f o r  t he  j e t  f low d e s c r i b e d  by Eq. ( 6 ) .  In s o l v i n g  Eq. (4)  a t  t he  bounda r i e s  of  the  
r eg ion  we impose the  c o n d i t i o n s  of  e x p o n e n t i a l  a t t e n u a t i o n  of  the  p e r t u r b a t i o n s  ( t he  second 
conditions of Eq. (5)), which are translated to the finite point q0 defining the position of 
the dividing streamline. As was shown in [i0], a variation of the boundaries of the jet flow 
region can appreciably affect the critical Reynolds number. This property of the stability 
characteristics is the basis for calculating the critical Reynolds number dependence Rex, f (w), 
for which we use the asymptotic formula connecting the coordinate of the dividing streamline 
and the blowing parameter [12] 

l[]nykH_l.O367+O.2328[ln2y~ In?] 0.213__7 ] 
n 0 -  fw, [ ~ + ~h ] + ~h ~ . . . .  
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Fig. 3. Critical wave number as a function of the blowing para- 
meter: i) B = 0.I; 2) 0.2; 3) 0.3; 4) 0.4; 5) 0.5. 

Fig. 4. Influence of uniform blowing intensity on the critical 
stability parameter: i) experiment [6]; 2) [14]; 3) [15]; 4) 
[16]. 

where k = 2.452, y is determined from solution of the equation ks = In(yk)/y k, s = ifw-fw, l. 
The dependence of the critical Reynolds number, thus computed, on the blowing parameter (the 
broken line on Fig. 2) agrees well with the dependence obtained by solving Eqs. (4) and (5). 
It follows from the investigation conducted on the stability of the Lock flow of Eq. (6) that 
Re x ~ 0 for fw + fw,, i.e., as we approach the separation point the laminar boundary layer 
becomes absolutely unstable. 

For a negative pressure gradient in the external flow (6 > 0) the equation of motion (2) 
has a solution for all values of ~ [I]. The entire range of variation of the pressure pa- 
rameter can be divided into two regions characterizing the presence (0 < $ < 0.5) or the 
absence (6 > 0.5) of a knee point in the velocity profile with strong blowing. The stabil- 
ity characteristics for the case$~ 0.5 were calculated in [13]. They obtained the result 
that as the blowing parameter increases the destabilizing influence of the transverse velo- 
city component becomes stabilizing, which is determined by removal of velocity fluctuations 
in the external flow, and is confirmed by asymptotic analysis of the inviscid flow in the 
wall region. The graph of the dependence of the critical Reynolds number on the blowing 
parameter for values 0 J ~ J 0.5 is shown in Fig. 2. It can be seen that even a slight S- 
shape of the velocity profile with strong blowing appreciably influences the critical Rey- 
nolds number, which either tends to a finite limit (for ~ = 0.4), or decreases (for ~ = 0.3), 
in contrast with the quadratic increase of Rex, ~ fw 2 for ~ ~ 0.5 [13]. For smaller values 
of $ there is a sharp decrease of Rex, , associated with the appearance of a sharply pro- 
nounced knee point in the unperturbed velocity profile. We note that in the range of varia- 
tion of the pressure gradient parameter 0.i < ~ < 0.5 the dependence Rex,(fw) is character- 
ized by the presence of a local minimum and maximum at moderate blowing. 

Figure 3 shows the dependence ~*(fw) (solid lines) and Cr,(f w) (broken lines). For 
small ~ the value ~, increases with increase of fw, but for strong blowing it drops with 
increase of fw for all values of 6- Therefore, for strong blowing, as the blowing in- 
creases, perturbations arising in the laminar boundary layer during transition to the tur- 
bulent regime become longer in wavelength. This conclusion is confirmed also by the results 
of the experimental investigation of [5]. The critical velocity of propagation of the per 
turbations Cr, increases with increase of blowing for all B, but for $ > 0.5 it tends to a 
finite limit determined by the asymptotic analysis of the stability of inviscid flow [13], 
and for ~ J 0.5 it increases without bound (the more sharply, the less is ~). Evidently, 
the matter of unbounded increase of the velocity of propagation of perturbations arises from 
an error in using the boundary layer approximation with strong blowing. It is probable that 
in an analysis based on the full Navier-Stokes equations (within which the boundary condi- 
tions are valid which do not allow us to construct a continuous spectrum of eigenvalues in 
transition through C r = 1 [i0]) this effect would be absent. 

3. Analysis of the stability of flow in the boundary layer with uniform strong blowing, 
using an exact solution of the equations of motion [3, 4], is impossible because of the pre- 
sence of the critical blowing parameter, for which, as in the case of a Blasius profile on a 
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permeable flat plate, there is flow separation from the wall. The stability characteris- 
tics of this type of flow, using the approximate solution of [7], were analyzed in [6]. The 
results of a numerical solution [6] of the modified Orr-Son~nerfeld equation, taking account 
of the transverse velocity component, are shown by broken lines in Fig. 4; Fig. 4 also 
shows the experimental data obtained in [6, 14-16]. The quantitative divergence between the 
calculated curve and the experimental data can be explained by the fact that the experimental 
points were determined from the point of appearance of regular perturbations of sinusoidal 
type of finite value, which corresponds to the start of transition of the laminar boundary 
layer to turbulent, while the linear theory investigates the stability of the flow to infini- 
tely small perturbations, i.e., it determines the Reynolds number at loss of stability, 
which, as a rule, is less than the Reynolds number for the start of transition. However, the 
dependences .Rex,(M) and ~,(M) obtained for strong blowing prove not to be very satisfactory in 
a qualitative sense, since they predict a fall of Rex, and an increase of E, with increase 
of the blowing intensity, This is due primarily to not accounting for the velocity distribu- 
tion arising from the pressure gradient induced by blowing. 

To determine the influence of the induced pressure gradient we use the results of cal- 
culating the stability characteristics of the similarity boundary layer on a permeable sur- 
face in the presence of a negative pressure gradient, as shown in Figs..2 and 3. The re- 
sults of the stability calculation for uniform blowing, obtained using Eq. (3), and of deter- 
mining the blowing parameter fw, = M~2-B)Rex, are shown in Fig. 4 by solid lines. The nat- 
ure of the dependence Rex,(M) obtained agrees with the experimental data [6, 14-16]. A com- 
parison of the results obtained with the data of [15], where experiments were conducted in 
the entrance section of a two-dimensional channel, can be considered quite correct, since 
the negative pressure gradient due to flow constraint is less than that induced by the trans- 
verse mass flow. As was true for the experiments, there is an increase of flow stability 
with strong blowing as the blowing increases. The stabilizing influence ofblowing is ex- 
plained, according to Eq. (3), by an increase of the negative pressure gradient, under the 
action of which the S-shape is smoothed out (the knee point becomes less pronounced), and 
the fullness of the velocity profile increases. Figure 4 also shows the variation of the 
critical wave number, referenced to its value for M = 0, with increase of blowing intensity. 
The nature of the calculated dependence agrees with the experimental data of [15], where it 
was established that, as the transverse mass flow increases, the wave number initially 
grows, reaches a maximum (approximately in the intense blowing region), when its destabil- 
izing influence becomes stabilizing, and then decreases. Thus, with strong blowing the 
boundary layer has longer-wave perturbations, which is the reason for the increase in the 
extent of the region of transition of the laminar flow regime to turbulent with increase of 
blowing. An analogous effect is confirmed also by the experimental data of [5, 15]. 

In conclusion, we note that, using the data obtained on the calculated stability of the 
Falkner-Skan problem with blowing, on the basis of the method of local similarity we can 
calculate the critical parameters for loss of stability of a wide class of flows on perme- 
able surfaces characterized by the presence of a negative pressure gradient. 

NOTATION 

x, y, rectangular coordinates; Ue, velocity in the external flow; Yw, blowing velocity; 
v, dynamic viscosity; M = Vw/ue, blowing intensity; F w = M R~e x, fw = MJ(2-~)Re x, blowing 
parameters; 8, pressure gradient parameter; Re x = UeX/V, Reynolds number; N = (y/x)#Rex(2--B), 
similarity coordinate; f, similarity stream function; ~, amplitude of the velocity pertur- 
bations; =, C = C r + iCi, wave number and phase velocity of the distribution of perturbations~ 
~* = ~*/~0. Subscripts: e, external flow; w, wall, *, critical. 
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FLOW OF A VISCOUS LIQUID FILM ON THE SURFACE 

OF A ROTATING DISK 

G. M. Sisoev, A. F. Tal'drik, 
and V. Ya. Shkadov 

UDC 532.516 

Results are presented from numerical calculations of steady-state nxisymmetric 
flow of a fil~ of viscous incompressible liquid over the surface of a plane ro- 
tating disk. 

Film flow of a liquid over the surface of a rotating disk is found in many technological 
processes, the calculation of which requires knowledge of the hydrodynamic characteristics 
of such a flow. A number of theoretical and experimental studies have been dedicated to this 
question [i-5]. Dorfman [i] presented results of calculations by the difference method for 
the case of uniform initial velocity component profiles, [2-4] considered asymptotic solu- 
tions for relatively thin films, while [5] numerically determined a solution of special form. 
The present study will use the colocation method of [3], which allows calculations for a wide 
range of parameter values. 

Let a viscous incompressible liquid be supplied near the axis of rotation of the disk at 
a constant volume flow rate Q. In analogy to [3], the velocity components Ur, u@, u z in a 
fixed cylindrical coordinate system r, @, z fixed to the center of rotation of the disk are 
represented in the form 

ur = ~rS~u, u0 = ~ r ( l @ 5 ~ v ) ,  uz = mH052w. 

The q u a n t i t y  6 appear ing  in ~ i s  the  t h i c k n e s s  of  the  boundary i a y e r  which develops  near  
an i n f i n i t e l y  l a r g e  d i sk  r o t a t i n g  in an i n f i n i t e  l i q u i d  volume [6] .  

Without  c o n s i d e r i n g  s u r f a c e  t e n s i o n  the  system of  equa t i ons  and boundary c o n d i t i o n s  des-  
c r i b i n g  steady-state axisymmetric flow of the film, to the accuracy of terms of the order 
(H0/r) 2, has the form [3]: 

Ou aw 
- - . +  2 u +  - 0, ( 1 )  

Ox ay 

Ou Ou ) 
ay ~a~--~u + l + 26~v - ~ u --~x + w --~y + u2 - -  v~ = o ,  ( 2 )  

_ _ _  ( av w av ) O~v 252u--5 ~ u + + 2uv = O, ( 3 )  
W 
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